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EXACT SOLUTIONS FOR THE TIME CONSTANTS OF AN
ADAPTIVE ARRAY IN BANDLIMITED NOISE

I. INTRODUCTION

Adaptive processors are the subject of considerable interest for a variety of applications in the
radar and communications fields. The reason for this interest is that adaptive processors can respond
automatically to an unknown external noise environment such as radar clutter or man-made interfer-
ence by steering nulls in the direction of the interfering sources and at the same time maintain a
desired signal response.

Widrow [1] has defined an adaptive processor (filter or array) to be a filter that bases its own
design (its internal adjustment settings) upon estimated statistical characteristics of the input and output
signals. In particular, an adaptive spatial array processor weights the coherent output from each sensor
and adds them to form a receiving beam. For an adaptive array these weights may not be constant, but
rather can change as a function of the spatial properties of the noise field. Historically, the adaptive
filter was first investigated in the early 1960’s by Howells [2} and Applebaum [3], the latter of whom
discovered the control faw which maximizes a generalized signal to noise ratio. A few years later,
Widrow [4,5] and his co-workers derived and demonstrated the utility of a least mean square (LMS)
algorithm for controlling the weights, and applied their approach to adaptive RF antenna systems. The
LMS algorithm was further developed by Griffiths [6] and Frost [7] who found procedures for main-
taining a chosen frequency characteristic for an array in a desired direction while nulling out noises
coming from other directions. Compton [8,9] and Zahm [10] examined the use of the LMS algorithm
as a power equalization technigue which allowed the aquisition of weak signals in the presence of strong
jamming. Brennan and Reed [11-13] further developed the Applebaum maximum signal to noise ratio
(MSN) algorithm by making contributions in the noise analysis of the algorithm and methods of
accelerating the convergence of the adapting weights. Gabriel [14] gives an excellent introduction to
adaptive arrays.

The subject of this report is the noise analysis of the Applebaum algorithm. A review of the tran-
sient analysis involving this algorithm is presented in Section II. In previous analysis [3,11,13,14], the
noise field was assumed statistically stationary and fluctuating much more rapidly than the adapting
weights. This implied that the instantaneous output weighting vector was independent of the instan-
taneous input noise. Hence, the expected value of their multiplicative vector product {which occurs in
the implementation of the algorithm)} could be separated into a product of expected values. This
simplified the transient analysis of the algorithm considerably. Bershad [15) extended the noise analysis
of the algorithm by lifting the restriction that the output process is independent of the input process.
He modelled the input data as white noise processes and the adaptive weight process (output process)
as a vector Markov-diffusion process. These assumptions lead to a Fokker-Planck equation for the joint
probability density function (p.d.f.) of the adaptive weights from which equations for the first and
second moments are derived. However, most often these equations are difficult to solve in closed form
and thus measures of the adaptive filter’s performance such as the settling time or time constants of the
weights, control [00p noise, and cancellation ratios of sidelobe noise are not derivable.

In this report, techniques that yield closed formed expressions for the first moment of the weight-
ing vector are presented for when the external noise sources are not necessarily stationary and can vary
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K. GERLACH

at any rate. Hence, solutions for time constants, control loop noise, and sidelobe cancellation ratios can
be derived exactly. The technique models the external noise sources as continuous state jump Markov
procasses [16] that modulate a carrier frequency. Section III discusses the merits of modelling input
noise in this manner and shows for example that the spectrum of a colored Gaussian noise process can
be replicated by a continuous state jump Markov process. Section III aiso discusses the theory of linear
stochastic differential equations (D.E.) where it is shown that the first moment of the weights is deriv-
able from an integro-differential equation.

Section 1V examines the case when the adaptive array is subjected to just one exiernal noise
source. The first moment of the adapting weights is derived exactly, and the related time constants are
found. In this section, it is also shown that these generalized results reduce to the results that were
obiained by past researchers {3,13,14} under the restricting assumption that the input noise varies much
more rapidly than the output weighting vector.

II, TRANSIENT ANALYSIS OF THE APPLEBAUM ALGORITHM
IN WIDEBAND NOISE

Applebaum {3] Iaid the foundations of adaptive array processing. Up umtit his work, pre-1964, the
pattern of an antenna array was steered by applying linear phase weighting across the array and shaped
by constant amplitudes and phase weighting the output of the array elements. These weights are
chosen a priori so as to produce a pattern that is a compromise hetween resolution, gain, and tow
sidelobes. Applebaum discovered a relatively simple algorithm which allows the weighis to change
adaptively in a time-varying noise environment. His "control law" attempts to vary the array weights
dynamically such that the steady state signal to noise ratio of the array output in any spatial
configuration of noise sources is maximized.

Because by definition, the array is optimized in the steady state, it will take the array weights a
certain period of time to approach their steady staie optimum vaiues. Thus there are time constants
inherent to the adaptive process. In this section, we present the transient analysis of the Applebaum
algorithm when the input noise is wideband or equivalently when the input noise is fluctuating much

more rapidly than the adjusting weights. For a more detailed presentation, see Gabriel [14].

We will now consider a linearly weighted phased array as seen in Fig. 1. Let g;(1), g,(8), ...,
gn (1) denate the output received by an N-element antenna array, and Qr = (g1, g3, ..., gy) where T
denotes the transpose. We will assume that @ is the sum of a desired signal vector S and a noise vector
V. The noise ¥ could consist of jammers, clutter, atmospheric noise, or internal receiver noise. Let W
be a column vector of complex weights that multiplies € to form the product Wir{Q The weights W
can be adjusted based on some optimization criteria to enhance the detection of a desired signal embed-
ded in noise. The direction of arrival of the desired signal is assumed known. Let § represent a
column vector of relative desired signal phases with

Sr= (eﬁ", emz, e ejéw). 21

For a linear array with element spacing 4 and a signal arriving from an angle ¥ with respect to the array
normal (see Fig. 2),

¢, = (2m nd/\) sinys
where A is the wavelengthand n=1, 2, ..., N.
The output desired signal power of W,Q is proportional to | W;§|% It is assumed in all foregoing

analysis that the input signal § does not contribute significanily to the covariance matrix of the input G
This assumption is valid for most pulsed radars where the signal duration is short compared to the pulse



NRL REPORT 8542

BORE SIGHT

CLUTTER A DESIRED SIGNAL
q P

JAMMER

Fig. 1 — Weighted linear array

COMPLEX

CONJUGATE
v

ANTENNA
PR - ELEMENTS
LOW PASS |- W
FILTER
ER) | e __I
]
S*
BEAM
T FORMING
w'v ADDER

Fig. 2 — Implementation of Applebaum adaptive algorithm

repetition period. It may also be true in cases where the external interference is a man-made jammer
and the received power of the jammer is much greater than the received power of the desired signal.
For radars, this might occur because of the one-way path of the jammer signal versus the two-way path
of the desired signal. The output power Py of the array then is

Py= E\W;VIi= Wi MW (2.2)

lid

where E denotes expectation and M is the covariance of the noise process with elements
m; = E{v v;}. The input process is assumed wide sense stationary, and hence M is independent of
time.
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The steady state output signal-to-noise ratio can be written as a proportionality or

77 2
S l—l_i (2.3)
N WrM W
it is shown in Ref. 3 that the set of weights that maximizes the signal-to-noise ratio is
Wope = k M isw 2.4)
where k is an arbitrary constant.
A functional block diagram of an implementation of t pplebaum adaptive receiving array is
a HER 5 B i H i PTURL IS T rarter W2 4% aunk that +ha ot cady state

caar in i Thic aloarithe atiamnig o ardiiiat tha o AT wpoe a
SCCT I rig. 4. 1118 @BOTilnill aliChipis 10 afjust tnd WEIENUNE vOTIoT rF (i) 3Uln that the st daly Jcact

signal to noise power ratic (S/N) is maximized.

It can be shown [11] that this adaptive array is described by the differential equation

ddW + (gM + DW= g8* {z.5)

where 7 is the time constant of the low pass filter in each loop, g is amplifier gain in each loop, fis an
identity matrix, and

M= V* VT‘ (2;6)

The matrix M is called the instantaneous convariance matrix with elements that are random variables.
Equation (2.5) is a stochastic linear differential equation with the stochastic input A and the stochastic
output W.

If the input process is fluctuating much faster than the output process, then we can write

g
=
-
bt
-

E{M Wj= E{M}E{W}=

This wouid be the case where the control loop bandwidth is much smaller than the bandwidth of the
input noise vector V.
If we take the expected value of both sides of Eq. {2.5) and use Eq. 2.7}, then
W+ (g + DW= g5% (2.8)

Because M is Hermitian, there exists a unitary transformation P which diagonalizes M or
PMP'= A (2.9)

where A is a N x N diagonal matrix with elements A , equal to the eigenvalues of M Ifwelet Y= PW
and ¥Yr = {y1,¥5. ..., ¥y), then Eq. (2.8) reduces o

Y +{gA+DY=gR (2.10)

where R = PS* and the initial condition is Y(0) = PWU. The solution for y, is
gh,+1

T

", (2.11)

r r

Y= *-"—1 + 1, (0) — —"—1 exp[—

A, + — A, + =
g g
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where Ry = (r,ry, ..., ry). The transient solution of the array weights is obtainable from Eq. (2.11)

and the relationship W= P7'Y. If we examine W as ¢ — oo, it can be seen from Eq. (2.11) assuming
gh,>> 1 for all », that y, — r,/A, and W — M~'S* which is the optimal solution that we are seeking.

The time constants associated with Eq. (2.11} are

r
T melL2 ... N 212
T, g)\,,-i-l'n 1, 2 ( )

where A , are the eigenvalues of M. Thus the smallest eigenvalue of M, A ,;, determings how fast the
adaptive array converges to its optimal weights. Each weight w, is a sum of exponentials whose time
constants are 7,. From Eq. (2.12) it can be seen that to speed up convergence, one can either decrease
T or increase g However, Brennan et al. {11] showed that this increases the conirol loop noise power
of the adaptive filter.

The brief summary of results presented in this section on the time constants of the Applebaum
adaptive algorithm, was derived under the restrictions that (1) the input process is varying much more
rapidly than the output process and (2) the input process is stationary, i.e., M is a constant. In the fol-
lowing sections, the Applebaum algorithm will be analyzed when these restrictions on the input noise
process are lifted. We impose some restrictions on our noise model, described in the next chapter.
However, this noise model allows us to examine the previously difficult problem of the derivation of

tive wai

8 conctan t tha adan o
€ atapuve weign

im Iy widehand
time constants for th H 1GET

F o CALEMA.

The Applebaum adaptive algorithm expressed by Eq. (2.5) is a stochastic linear differential equa-
tion because of the stochastic input vector V. The standard methodology used to study its performance
in noise is to derive the first and second moments of the weighting vector W and to analyze perfor-
mance measures such as time constants and excess noise power due to weight jitter as a function of the
parameters of this equation. If we assume that the nth component of V consists of internal receiver
noise n, plus the sum of M external narrow band noise sources, then v, can be expressed as [14]

M R
1) = () + 3 X (T N (3.1)
k=1

where ¢, = (2w d/r) sin8,, X is the wavelength of the carrier, 4 is the antenna element spacing, € ; is
the spatial location angle of the kth source measured from the boresight, X, (1) is the random amplitude
modulation of the kth source, and £, + ®,{(¢) is the random phase of the kth source which consists of
a stochastic component ®,(s) and a nonstochastic component £,. In the analysis to follow, we assume
that ,(z) = 0, so as to highlight the effect of the external noise sources on the adaptive processor.

The random amplitude modulation of the kth source, X, (¢}, is a stochastic process and can be
modelled in a variety of ways. Let us just consider a single source with stochastic amplitude modula-
tion equal to X(z). For example, if the amplitude X(r) is modelled as a Markoff diffusion process,
then the first moment < W{r)> can be formulated as the solution of a nonrandom partial differential
equation of the Fokker-Planck type [17]. However, this equation is most often exceedingly difficult to
solve because of a diffusion term (2nd derivitive with respect to the spatial coordinate). The methodol-
ogy used in this dissertation is toc model the input noise amplitude modulation as a continuous state
jump Markoff process (CSIMP) [16]. If X (¢} is a CSIMP, then X () is discontinuous with the states
of X(r) changing abruptly by jumps as illustrated in Fig. 3(a).
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Fig. 3 — Markov jump processes

The amount of time 7 that X(¢) remains in a given state is a random variable and hence can be
characterized by a distribution funciion {for instance, Poisson incrementsj. The successive state of
X{r} is determined by a probability distribution. By controlling these two distribution functions, we
find that continuous time noise processes can be modelled. For example, if we choose the average
vaiue of 7 small such that < T>~! >> B, where Bis the bandwidth of the adaptive processor and aiso
choose a probability distribution function which forces a successor state to be highly correlated with its
current state, then the sudden jumps of the input process will not affect the output process W{r} and
time continuous correlated noise can be simulated as seen in Fig. 3(b).

More importantly though, we find in the following sections that the probability and first moment
functions thai resuit when ihis type of modeliing is used can be formuiaied as the soiutions of integro-
differential equations which are sometimes readily solvable. Thus an analysis of parametric variations
in the adaptive algorithm is possible.

B. Noise Model for Continuous Staie Jump Markov Process

Kolmogorov [18] and Feller [16] laid the foundations of the theory of jump processes. Both
authors were concerned with the purely discontinuous process where the state remains unchanged
between jumps. Modern texts which consider the subject are Srinivasan [19], Bharucha-Reid [20], and
Prabhu {Zil. We iniroduce the iopic by using the ierminoiogy of Prabhu.

Let the states (possible wvalues) of the process X{(r) belong to the real number line
(—e < X < o). Let the transition distribution function P(x, ¢|xg, f,) be defined by

Pix, tlxg, to) = Prix () < x|XUg) = xq} 3 (1o < 1) {3.2)
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and
P(x, tlxg, 1) =p(x — xp) (3.3)

where 1 (4) is the Heavyside step function.

We require also that P(x, t|x,, #;) satisfy the Chapman-Kolmogorov equations and now define a
purely discontinuous process as one in which 1) if X{1) = x, then a probability 1 — ¢(x, A+ O(Ar)
that there is no change of state (X (1) remains constant during [+, + + Ar), and 2) if there is a change
of state, then the distribution function of X (¢ + A¢) is given by II{x, x’; ) + O(Ar¢). The function
c{x, t) can be interpreted as the "jump rate" We can use c(x, ) to control how ofien the process
switches states: the larger the value of c{x, t), the more rapidly the process is state jumping. The
function II{x, x ', t) is actuaily a conditional probability distribution conditioned on x. The distribution
function IT{x, x'; ¢) will be used to control the relative correlation between successive states. Both
c{x, ¢t} and II(x, x"; 1) determine the correlation function of the process. For our purposes, we
assume both functions are temporally independent with c(x) = ¢(x, ¢) and II{x, x";, 1} = I(x, x")
and that both are continuous with 0 € c{x) < oo. In addition, we assume that X (¢) is a second order
process {bounded variance).

If we define p(x, xq & ty) to be the joint p.d.f. of X{¢} and X (s}, and p(x, ¢) to be the single
variable p.d.f. of X (¢} at any time ¢ then it is shown in Ref. 22 that

d
EP(X, xg, t, tg) = — c(x)p(x, xq; 1, tp)

+ f_m elxVm{x’, x)p(x’, xg. t, tg)ex’ (3.4)

LC.:  plx xq tg, tg) = plxg, )5 (x — xp)

and
4

Lpti == c0pls 0+ [ exm’, Nplx', Dax’ (3.5)

I.C.. p{(x ty) given
where

a(x', x) = 9 O(x', x). (3.6)
dx

The function, 7 (x', x), will be called the transition p.d.f. of the process.

In the following analysis we assume that the process begins in equilibrium. That is, if we assume
the existence of the limit and define

Poo (x) = rll_r{_: pix, 1), (3.7

then we will let p(x, 0) or simply, po(x) = p.(t). The reason for making this assumption is that as
t — oo, the input process becomes stationary. Hence, we can derive a steady state spectrum. Setting
Po{x) = pw(x) simply makes the process stationary at + = 0. We use the steady state spectrum of the
jump input process to match the spectrum of a time continuous stochastic process in the next section.
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Let us formutate p.(x) when ¢{x} = ¢; where ¢; is a constant. Starting with Eq. (3.5), we
recognize that as + — oo, the time derivative seen in Eq. (3.5) goes to zero. Cancelling ¢, from the
resultant equation, we obtain

) = [ m (e, X pe(xax: (3.8)

Now if = {x’, x} is independent of x', i.e., the next state of the process, X{(¢), is independent of
the current state, then it is easily seen from Eq. (3.8) that p..(x) = 7 (x) where 7w (x', x) = =7 (x).
Thus we see that the steady state p.d.f., p..(x), is simply the transition p.d.f., m {x). We cait this kind
of CSIMP, pseudo white.

Let us consider a CSIMP where the joint p.d.f. of X(¢;} and its next state X () is a symmstric
function, p{x’, x} = p(x, ). The single variable p.d.f., p(x}, and p(x’, x) are related by the equa-
tions: p{x’ x) = w(x’ x)p(x’) and

px) = _[Zp(x’, X)dx' = LZ*:r(x’, x)p(x)dx’ 3.9)

Thus comparing Eq. (3.9) with Eq. (3.8), we see that p.(x) = p(x). Therefore to find p..{x}, we
merely integrate p{x’, x) over all of x'. For example, let us define w (x’, x) to be the Gaussian condi-
tiona! p.d.f,

Dy = 1 S S,
a{x’, x) o Gr (=72 exp 270 = 2 (x —px° (3.10)

If p(x, x) is symmetric, then Egs. (3.8) and (3.9) imply that

Doo(x} = \/5170_ exp— —2%1«:2‘ 3.11)

Hence p..{x) is a Gaussian p.d.f. We will call noise with a transition p.d.f. given by Eq. €3.10), a
colored Gaussian CSJMP. Note that the parameter p in Eq. (3.10) can be used to control the degree of
correlation between successive states. ‘

If we force the input noise process to begin in equilibrium, i.e., po(x) = p,(x), then we can
show that the solution, p{x, 1} in Bq. (3.5) is simply p{x, 1} = p.{x). Hence, the singie variable
p.d.f. function p{x, r} is independent of time if the noise process begins in equilibrium.

C. Power Specirum

It is shown in Ref. 22 that the power spectrum of the noise process, X(t), for when the process is
in equilibrium, c{x) = ¢; where ¢; is a constant, and 7 {x'.x} has the form {see Eq. (3.10) for exam-
ple)

m(x’, x)=w(x—px" 31
is (also see Fig. 4) |
2¢(1 — plo?
w4+ cf(1—p)?

S.(w) = (3.13)

Thus we see from Eq. (3.13) that a first order base bandlimited spectrum of a given continuous
random process may be matched or modelled by a CSIMP by choosing ¢y and p properly. We would
seem to have one extra degree of freedom in matching the specirum. However, other considerations



NRL REPORT 83542

A s, (w)

Py
~Cyl1-p)

Fig. 4 — Power spectrum

AN

0 Coll-P)

such as for instance making the adaptive receiver insensitive to the sudden jumps have to be weighed
in choosing cy and p. We can show that the average time T that X(¢) is in a given state is ¢5'. Thus,
it may be desireable to make ¢y, > > B, where Bis the bandwidth of the adaptive receiver.

D. First Moment of a Stochastic Linear Vector Differential Equation

Let us consider a stochastic linear vector D.E.

i"&’;ﬂ= F(X (), DWW + GX(), 1) (3.14)

It is shown in Ref. 22 that if X(¢) is a CSIMP, then the first moment of the weights < W(#)> can be
formulated by the following equations:

A (x z)=f‘b elxyr(x’, x)ylx’, thdx' — c(x)y(x, 1)
Rt ; , xylx’, x)y(x,

+Fx Dy(x O + Glx, Dplx ) | (.15)

IC: y(x. 0) = p(x, 0) W,.
<W()> = f_:y(x, 1) dx. (3.16)

Hence, we first find y(x,¢) by using Eq. (3.15) and then integrate y{(x,¢) which yields < W({)>.
We use Egs. (3.15) and (3.16) in Section IV to analyze the Applebaum adaptive algorithm when the
input noise is a single interfering source generating a CSIMP.

IV. PARTICULAR SOLUTION FOR A SINGLE INTERFERENCE SOURCE
A. Introduction

In this section we consider the case when the adaptive receiver is being interfered with by just one
external noise source. We consider this to be the only source of interference, internal or external, so
as to highlight the effect of a single noise source on the adaptive filter and to demonstrate the noise
analysis techniques presented in the previous section. We represent the noise source’s signal as the

9
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scalar X(r)e”*” where X(¢) is the stochastic ampliitude modulation and «{r) is the random phase of
the noise source. The amplitude modulation X {¢) is modelled as a CSIMP. For a single noise source,
the noise power of X{s) is measured at the adaptive receiver and not the noise source’s transmitter,
Also, the noise source is assumed spatially stationary (it does not move). Furthermore, the noise
source’s voltage X({f) is assumed narrowband with respect to ifs carrier frequency so that the input
noise vector V(r) is simply AX()e*” where 4 = (™!, ¢*? ... ¢’®") indicates the direction of
arrival of the input interference and is essentially constant (recall from Eq. (3.1) that &, is a function
of the wavelength of the input signat). Subsection B formutates the solution of the first moment of the
weighting vector by using the noise analysis techniques presented in Section 1. Subsection C exam-
ines in detail the time constants associated with this weighting vector. It is shown that if the input
noise bandwidth decreases, then the seitling time or time constant of the weighting vector increases. It
is also shown that if the input noise bandwidth is finite, then the time constant approaches a positive
definite limit as the input noise power becomes large. The exact sotution of first moment of the
weighting vector is derived in Subsection D.

B. First Moment Formulation

In this section, we formulate the solution of the first moment of the weighting vector of the adap-
tive algorithm by using the noise analysis techniques described in Section III. We use the assumptions
as noted in Subsection A of this chapter. To this end, if we substitute AX(r}e*? for ¥ (1) in the
adaptive algorithm (2.5), we obtain the equation

aw _

£ Y2 (A4, + 1 ;1 Wi + £ 5% (4.1
dar T T T

IC. W= W,

¥ Ge

Note that W is not a function of « (¢). Let us just consider the N X N transition matrix solution [23, p.
1311, ¥ (1}, of Eq. (4.1) or
v
dt

£ x2(0) 4t + } rlqr 0 4.2)

ILC. (0= 1L

It can be shown that the solution of Eq. (4.1} is

W) =W+ [ ¥~ s an, (4.3)

Taking the expected value of both sides of Eq. {(4.3) yields

<W(()> = <V¥(s)> W0+f0: <W(r— t)> dry -f-s*. 4.9)

Hence if an expression for <¥ (1)> is found, then < W{1)> can be evaluated simply by using

Eq. (4.4). We use a methodology suggested by Lang and Pickholiz [24], which reduces the number of
differentiat equations to be solved from N? {(Egq. {4.2)) to just two. The technique takes advantage of
the form of the matrix 4*47. Let us write the solution of Eq. {4.2) in the form

V(1) = A*Apd (1) + W) 4.5

10
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where s (¢} and ¥,(r) are scalar functions yet to be determined and with initial conditions

¥ (0) = 0; ¥, (0) = 1. (4.6)
Substituting Eq. (4.5) into Eq. {4.2) yields
d\ d
W g+ B2 L2 e + Lo, + £ x|, - Lyt 4.7
dt dt T T T T

The fact that A*4rA*47= (47:4*) (4*47) = N A*A7 was used in deriving Eq. (4.7). Now if we set
dir

D E N+ e+ £ 20, (4.8)
dt T T T

db, 1 .
L= - 4.9

then we see that the solutions for lbl(t) and l,bz(t) in Eqs. (4.8) and (4.9) will yield the complete solu-
tion of the transition matrix ¥ {7} by USii‘lg I:,q \4.5}. T'(‘IU:), we have reduced the number of D.E.s
under consideration from N? to just two. Actually the procedure we have used could have been per-
formed more systematically within the context of algebras [25]. The two matrices, 4*4; and [, are said

to be the elements of the algebra, and ¢+ (¢} and ¥ ,(¢) are called structure constants.

Now if we know the first moments of ¥, and ¥ ,, then
SW()> = A*A; <y ()> + I<g,(1)>. (4.10)

It is seen that the structure constant, ¥r,(f), may be solved directly from Ea. (4.9} and the initial
condition given in Eq. (4.6) as

Go(t) = e /7. , (4.11)
Thus we have to consider only the stochastic D.E. given by Eq. (4.8} or
ay
— = |E o+ Llgo+ £ L e (4.12)
LC.: ¢ ,(0) = 0.

Our next step will be to determine < ,(¢)>. If we model the input noise to be a CSIMP with a
transition p.d.f., = (x',x), and jump rate, ¢q, and set

FX(0.0 = - £ Nx20) - -} (4.13)

r

G(X(),0) =— Tﬁ X(ne -, (4.14)

then we may use Eq. (3.15) to obtain an integro-differential equation for the state dependent mean
density function y (x,r). This equation is

gN x2 + L + cn] y(at) + ¢ fR m(x'x) y(x'.0)dx" — p(xt) £ 2 il (4.1%)

d
— 3y =—[=x"+ =+l yxt)+ g | 7" x) y(x"0)dx" — plxt) = x2e™ ™ (4.15)
ar T

I.C. y(x,0)=10

I1
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where p(x,1) is the single variable p.d.f. of X(¢) and R is the probability space of x*. The total mean or
state independent mean, <ir;{1)>, is found by using Eq. (3.16} or

<e (0> = [ pixn d. (4.16)

Let us examine the case when the input noise is pseudo-white and in equilibrium or w (x',x) = 7w (x),
and po(x) = po.(x) = 7w (x).

Thus Eq. (4.15) becomes

% yx=-|g -iy x* + % + cof ¥t} + cgm{x) fk yix't) dx’
d ” 7 . | R

—wix) f—xze“’* (417

LC. y(x,0)= 0.

We will now solve Eq. (4.17). Let us define ¥{x,5) to be the Laplace transform of y{x,7) and
G{s}) as

G(s) = J, Y(x'.s) dx”. (4.18)

Taking the Laplace transform of both sides of Eq. (4.17) and solving for Y(x,s) yields

£ 2

Y(x8) = K(xs)m(x)]coGls) — ~ n (4.19)

s+ =
T

whora
WAl

1
E e+t pots
T T

K(x,5) = (4.20)

Substituting the expression for Y{x,s) as given in Eq. (4.19) into Eq. {4.18) and solving this
tinear equation directly for G{s) results in

g 1 fk x* Ki{xs)w (x)dx
T4 _E_ 1- COfR K(x,s)m ()

-
F Y
28]
—
R

The expression for G{s) in Eq. {4.21) may now be substituted inte Eq. (4.19) to find ¥{xs).

If we take the Laplace transform of y(x,¢) and integrate over R, we obtain from Eq. {4.16) the
Laplace transform of <y, (¢}>. However, we see from Eq. (4.18) that this is just G(s). Hence

L i<y ()>)= G(s). (4.22)

The above can be evaluated by using the expression seen in Eq. (4.21). We will now analyze in depth
the special case when

com (x) = a U(—bb) (4.23)

12
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where U(—5,k) is a rectangular function of unit height extending from —# to b, and « is a constant pro-
portional to the jump rate. From Eq. (4.23) we see that the transition p.d.f. is uniform so that
. 1

Vi rd FIRY
wix)= J{—bb) e

o~
™
b
£
S

and

co = 2ab. (4.25)

Dividing U{(—5,86) by 25 normalizes the density function. The region R now extends from —5& to b
Essentially Eq. (4.24) implies that the next state of the stochastic process, X (1), is chosen from a uni-
form p.d.f. on the interval (—&,4), and that this selected state is independent of all previous values of
X(1). If we set

b
Q(s) = f_b I dx N o (4.26)
s+ — +2ab +g;*~x2

then by algebraic manipulation, we can show that Eq. (4.22) becomes

_ 1 o6y 1 _ 1
L 0> = oy Tme0® N . 1 @27
s+ .
or equivalently
— 1 -1 Q(s) . __1_ T
<t (1)> ———2bNL l1—~aﬂ(s)] N (4.28)

C. Time Constants

In this section, we examine the Laplace transform solution of < ;(#)> in detail. Recall from
Section II, that measures of effectiveness of the adaptive filter are the time constants or settling times
of the adapting weights W (t). These time constants are related to the Laplace transform of < W(r)>,
which in turn is related to the Laplace transform of < (#)> through Egs. (4.10} and (4.4). From Eq.
(4.27) it is apparent that the poles of L{<y(¢) >} other than s = —1/7 will be dependent on the func-
tion 2 (s). A discussion of the function 0 (s) follows. It can be shown that © (s) is a single valued
function of the complex variable s and has a line of singularities extending along an interval on the
negative real axis as seen in Fig, 5.

If we set

2
d=—~L—2ab; dy= -1 - 2ap - % (4.29)

where r = (r/gN)"?, then this interval is (4,,d;,). The function 2 (s) is unbounded at the end points
of this interval and we can also show that if x € (d;,d,}, then

. . b— 21wy

é11‘1{1;{{ 0O(x + je) N In b+ j i (4.30)
. R b — ryl? ,
Ell.%l+ Qix — je)y = L In 51 + NG {4.31)

13



K. GERLACH
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Fig. 5 — The function £ {5}

where vy = d; — x. Equations (4.38) and (4.31) demonstrate the discontinuous nature of {2 (s) on the
: MThn Friseen
LD, L1IG LML

tion {1 {s) [1 — a2 {s}]"!, which is part of the solution of L{<,;(f)>}, will also have a tine of singu-

larities extending between the same limits as seen in Fig. 6.

S-PLANE AM

/BOUND?D

M;—» RE
A

LINE OF
SINGULARITIES

b

¥
Fig. 6 — The function § (s) [t — a & (s)]~!

It is seen that the time constants of ¢, {z) and the weighting vector of the Applebaum algorithm
will be dependent on the poles of the function 2 (s) [1 — aQ (s)]17!. It can be shown that this func-
tion has oniy one poie, A, which satisfies the equation

afliyi=1,

It can be shown that this pole is real and is alwavs located on the interval
[dl, g L].
T

14

(4.32)
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Thus the pole is never on the line of singularities as seen in Fig. 6. To show that A < —1/7, we find
by using Eq. (4.32) and the definition of 2 (s}, Eq. (4.26), that

gN 1

2+ + A
b
a@ )y —1= [ ;N dx = 0. (4.33)
x _d1+h
.

Assume A = —1/7, then the numerator and denominator of the integral’s kernal seen in Eq. {4.33) are
always greater than zero. Hence, the integral is always greater than zero and Eq. (4.33) is never true.
Thus, A < —1/r. We can use Eqs. (4.30) and (4.31) to show that A does not lie on the interval
{d,.d,]. From Egs. (4.30) and (4.31), the function Q (s) has values that have imaginary parts greater
than zero as we come arbitrarily close to the interval [d,,4;]. Hence, along this interval, a2 (A) — 1
will have a nonzero imaginary part and cannot equal zero. We can also use Eq. {4.33) to show that A is
not less than d,. If this were true, then the numerator and denominator of integral’s kernal in Eq.
(4.33) would both be negative. Hence, the kernal is always positive which implies that
a®t(A) — 1 > 0. Thus, if A cannot be less than d; and A € [d, d,], thenh > d|.

It should be noted that although £ (s) is unbounded at &) and d,, that Q (s)/(1 — aQ(s)) is
bounded. It can be shown by using elementary limiting procedures that
Q) 1

W 1. - 2 4.34
b Tmeam 2 T 4349

Integrating Eq. (4.26), we obtain
o 2r ’ b I ‘
L \

i ( )= 172 arctan 73
?\+—1—+2ab r]\+l+20b
T T

where arctan {-} is the principle branch of the inverse tangent function.

We will define Ty = —1/\ as the output time constant of the adaptive process and 8 = gN< X?>
The parameter 8 will be called the element-gain-input noise power product because it is the multiplica-

tive product of the number of elements in the receiving antenna’s array, the gain of the receiver’s
amplifiers, and the input noise power measured at the receiver’s front end.

(R E=L I ) L=l

To better understand the nature of the adaptive processor’s time constant let us substitute the
expression for {0 (A) given in Eq. (4.35) into Eq. (4.32) and rewrite Eq. (4.32) as a function of 8 and
the following normalized parameters: T= T/r, and To= T,/r where T is the average switching time
of the input noise (T = 1/cy). This equation becomes

1
BT — Ty + TH)p~2

1/2

38 -1 (4.36)

I - T[ri + Tﬁl

arctan

The parameters 7 and 'f‘o will be called the normalized averagé switching time and the normalized time
constant of the adaptive output process, respectively. Both are normalized to the time constant associ-
ated with the adaptive receiver’s integrators seen in Fig. 2. If we plot TO versus B for various contours
of T by using Eq. (4.36), we obtain curves as seen in Fig. 7. Note that T, appears to be a monotoni-
cally decreasing function of 8 and a monotonically increasing function of 7. Using the property that
dy; < A < —1/r, we can show that

T_ <7<, (4.37)
14+ 7T

15
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Fig. 7 — Normalized time constant, Ty, vs T and 8
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and that as 8 — oo, the normalized time constant, 7‘0, approaches the lower bound of the above ine-
quality. It is significant to note that past researchers [11] have derived T, versus 8 for when T = 0.
We see from Fig. 7 that this assumption that the input noise is varying infinitely fast results in an upper
bound con the performance in terms of minimizing the time constant of the adaptive processor. Also,
past researchers [11,14] implied that as the inpul noise power becomes large (or 8 — =0} that the out-
put time constant goes to zero. We see from Fig. 7 that this is not the case for nonzero T. As the
input noise power becomes large, the normalized time constant approaches a lower bound equal to

T/ + T

To give the reader some practical insight into the meaning of the time constant curves seen in
Fig. 7, consider the example illustrated in Fig. 8. Here, we show (Fig. 8(a)) a sample realization of the
amplitude modulation noise, X{¢}, which is a CSJIMP with T= 1. Figure 8(b) is sample piot of the
magnitude of the i th element of the cutput weighting vector, W(¢). Initially, W;(s) is in the guiescent
state. When a noise step is applied at ¢ = f;, W.(r) adjusts itself to null out the noise source. At t=
t1, the input noise power is decreased and again the weight element adjusts itseif. Noie that the time
constant Ty(1g) is greater than Ty{y;). This can be explained by using Fig. 7. Because the input noise
power is greater at ¢ than at f,, we see from Fig. 7 that Ty(sp) > To(r) and hence Ty(t) > Tole).
The weight W,(r} will approach its optimum value after some period of time. The curves of Fig. 7
imply that it will reach this optimum value (with arbitrary_accuracy) faster if the input noise power is
larger. In addition, if the fluctuations are more rapid (say T = 0.5), W,;(t) will reach its optimum value
faster,

If we expand Ty in a Taylor series as a function of small 7, we can show that [22]

P T4+ o(TH]. (4.38)
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Fig. 8 — Input/output example

It is seen from Eq. (4.38) that 7’0 can be approximated to a first order term in T if

2 101

T << BE—=
,82

Equation (4.39) also specifies the bounds of the validity of the often used assumption that the input
noise process is varying much faster than the output process. For 8 >> 1, this assumption is valid
when T << 7/8 or equivalently when the input noise bandwidth B,, >> gN< X>?%/(w7).

From Eq. (4.38), we see that 7‘0 and hence the time constant of the output process increases for
small T. In fact, it is shown in Ref. 22 that the time constant is a minimum as 7 — 0 or equivalently

when the input process varies infinitely fast.

If the input noise is varying infinitely fast or T = 0, we see from Eq. (4.38) that Ty~ 1/(1 + 8).
It is interesting to compare this result if the normalized time constant is acquired by the methodology
used in Section II. If we take the expected value of both sides of Eq. {4.12) and assume that the input

is varying much faster than the output such that < X2y > = < X?> <y 1>, then

A<y >

1

| wxrs + L <p (0> + & < x> i,
T T T

17
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From Eq. (4.40), it is apparent that the eigenvalue is

BN g L (4.41)
T T

A =—
and hence the normalized time constant is 1/{1 + 8). This agrees with the result obtained by our pre-
vious methodology.

D. Exact Solution for First Moment

In this subsection, we obtain an exact expression for the first moment < W{:}> of the weighting
vector for our specific example: adaptive processing when there ig only one external noise source which
generates a pseudo-white CSIMP, We examine < W(¢)> in the steady state (+ — <o) and compare
this result with the sclution that is obtained using the assumption that the input noise is fluctuating
much faster than the output process, W{s).

We now find the first moment < W{1)> of the weighting vector by using Eq. (4.28). To start
with, the compiex function  (s) [1 — a0 (s)]! has a line of singuiarities on the negative real axis;
thus part of the solution of <y {(r})> will be in the form of a real integral. Reference 22 evaluates the
inverse Laplace transform of £ {s) {1 — aQ(s)]"' in terms of 7, @, N, g and b If we substitute for
these parameters the defined parameters 7, 8, and Ty, then L7} {Q () [1 = a© ()17} may be shown
to be

TN — a ()71

. - —mmzi l
¥ -, -+ ThEd e 2 P
= 2ble 6B e % o : (4.42)
e _ 1_ (1] 2
PR

_ The second term in the large brackets is due to line of singularities on the [d;,d,]. Note that as
T — 0, the second term goes to O. Thus, the integral seen in Eq. (4.42) does not contribute to
<iry(£) > when the input is fluctuating infinitely fast.

Our original intentions were to find the first moment < W{s)> of the adapting weight vector.
This can now be done by substituting the expression for L™ {2 (s)[1 — aQ (s)17!} seen in Eq. (4.42)
into Eq. {(4.28) which yields a complete solution for < {{¢)>. Then the first moment <¥{1)> of the
transition matrix can be found by using Eq. (4.10) and recognizing that <@ ,(r)> = ¢ /", This expres-
sion for <¥(¢)> is then substituted into Eq. (4.4) which yields

I it ﬁr (w)t
= ..1_ * T _ _ Ta"' 2 w?( — L Jdw
<W(O)> = {{NA Arle "1+ Tol—e ) + (68T f (m)rz(m) d
+ 1(1 _ euT) S*g (443)

where

) =382+ 1+ 7' (449

Z
) = laﬁ?— m[—;%“i” o, (449

13
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If we consider the steady state value of the weighting vector and denote this by We=lim < Ww(t)>,

[—reo

then from Eq. (4.43) it is seen that

— — i 2
To— 1+ (68T [ —2 40

Ta7 1 ¥* [
We = lN A*Ar 0 ri{w)rie)

+ l] S*g {4.46)

where 7o= T, (8.T). Had we derived W,, under the assumption that the input X (¢) was fluctuating
much faster than the output W (¢) then it would be found as shown in Ref. 22 that

1

We = [ A™r (To— 1) + i S*g (4.47)

where To= T, 8,0) = 1/(8 + 1). Equation (4.47) was found by taking the expected value of both
sides of Eq. (4.1), setting the time derivative equal to zero, and solving for W, by using the matrix
inversion lemma [26] and the assumption that < X2(1) W{(1)> = <X*()> <W(1)>. We observe
that Eq. (4.46) differs from the classical result, Eq. (4.47), by (1} the contribution of the line of singu-
larities and (2) by the fact that T,(8,7) > Tn(B 0) for T = 0. However, for T = 0, Eq. (4.46) is
identical to Eq. (4.47).

V. SUMMARY AND CONCLUSIONS

In this report, we have introduced a technique that vields closed formed solutions for the noise
analysis of the Applebaum adaptive algorithm. Past researchers have derived results under the assump-
tion that the input noise is stationary and rapidly varying with respect to the output weighting vector of
the Applebaum algorithm. We have extended this work to include noise that is not stationary and can
vary at any rate. The technique models the external noise sources as continuous state jump Markov
processes that modulate a carrier frequency. The first moment equation for the optimal weighting vec-
tor that results is an integro-differential equation that is solvable in specific cases. In particular, we
have examined in detail the case where the adaptive algorithm is subjected to a single external noise
source whose modulation is a continuous state jump Markov process. We found that the assumption
made by past researchers [3,13,14] that the input noise is rapidly varying with respect to weighting vec-
tor imposes an upper bound on performance. It is shown in this case that the time constant of the
adaptive output process will be minimized. As the input noise process variations become slower, the
time constant of the output process becomes larger. Bounds on the validity of the above assumption
are established in Section IV. Also past researchers L.J l.) 14] 1mpucu that if the mpuL noise power
became infinite, then the output time constant would go to zero. We show that for input noise with a
finite bandwidth, that the output time constant approaches a positive lower bound as the input noise
power becomes finite,
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